Вопрос расширения вселенной

Пнд, 07/07/2014 - 19:34

Изменение силы притяжения в зависимости от мерности пространства

Способы введения дополнительных измерений

Почему Вселенная расширяется? Есть мнение, что это происходит из-за темной энергии, а может быть из-за утечки гравитации?

Космологи в замешательстве. Обычно предметы, брошенные вверх, замедляются. Планеты притягивают объекты, звезды притягивают планеты. Это нормально. Но почему тогда Вселенная расширяется? Отдельные галактики, разбросанные после Большого взрыва в разные стороны, должны притягиваться друг ко другу — и расширение должно замедляться. Но того не происходит: они разлетаются друг от друга с ускорением. Принято считать, что виновата во всем темная энергия, хотя она темная именно оттого, что о ней никто ничего не знает. Но уже ясно точно, что на предельно больших расстояниях гравитация превратилась в отталкивающую силу, а не в притягивающую.

Из школьной физики мы знаем, что тяготение порождается материей и энергией. Но если тяготение странное, значит странными должны быть или материя, или энергия. Вот откуда взялась идея о темной энергии. А может быть, неверны сами законы? Так уже было в истории: закон тяготения Ньютона однажды столкнулся с рядом принципиальных ограничений, и в 1915 году его место заняла общая теория относительности Эйнштейна (ОТО). Эта теория тоже не идеальна, так как не объясняет многие явления, протекающие при очень малых расстояниях, например, в квантовой механике. Следовательно, ОТО, видимо, превратится в частный случай другой теории — квантовой теории гравитации (КТГ).

Так вот, пресловутая теория струн (см. НиТ № 6,2011) — это всего лишь один из подходов к КТГ. Эта теория должна объяснять действие гравитации на микроскопических расстояниях, например внутри черной дыры, где обнаруживаются удивительно необычные квантовые свойства материи.

Теория струн пренебрегает квантово-механическими эффектами, когда речь идет о больших расстояниях. Но расширение Вселенной — это и есть те самые большие расстояния. Поэтому приходится срочно пересматривать устоявшиеся положения. А вдруг теория струн поможет объяснить изменения законов тяготения и на сверхбольших расстояниях? В этой теории предусмотрены дополнительные пространственные измерения, в которых могут двигаться частицы, и это может стать ключом к успеху.

Раньше считалось, что тела из нашего измерения не могут попадать в дополнительные, так как те очень малые. Но наука уже доказывает, что некоторые измерения могут быть бесконечно большими. Но тем не менее мы не попадаем в них только потому, что наши тела не могут покинуть пределы трех измерений. Однако гравитоны, передающие гравитационные взаимодействия, могут вырываться из нашего измерения, что уже приведет к изменению закон гравитации.

ВСЕ ИЗ НИЧЕГО?

Поначалу астрономы связывали космическое ускорение с так называемой космологической постоянной. Эта постоянная была введена Эйнштейном и была призвана выражать энергию, свойственную простому пустому объему пространства. Пустой объем пространства без материи должен содержать энергию, эквивалентную примерно 10-26 кг/м3. Сам Эйнштейн впоследствии отказался от этой постоянной, хотя она прекрасно согласуется со всеми известными данными. Ее проблема в ее малости. Она настолько мала, что не может влиять на процессы в космической истории, тем более в период раннего формирования Вселенной.

Далее физики предположили, что ускорение Вселенной связано не с самим пространством, а с неким энергетическим полем в этом пространстве. Тем более, что потенциальная энергия некоторых пространственных полей согласуется с космологической постоянной. Такое поле назвали «инфлятор», и оно действительно призвано объяснить период инфляции, т.е. период ускоренного расширения Вселенной на ее ранней стадии развития. Но откуда взялась поздняя инфляция? Вероятное новое инфляционное поле назвали «квинтэссенцией», но плотность энергии в этом поле должна быть очень маленькой.

Другие материалы рубрики


  • ...Тесное сходство протона и нейтрона наводит на мысль, что здесь существует симметрия. И действительно, на ядерный процесс никак не отразится, если можно было бы заменить все протоны на нейтроны, или наоборот. Это свойство получило название — симметрия изотопического спина, или изотопическая симметрия. Название связано с тем, что ядра, отличающиеся только числом нейтронов, называются изотопами. Нынешнему состоянию Вселенной соответствует равное количество протонов и нейтронов, которые находятся в постоянном движении. Но какая причина вызывает эти движения и вообще изменения в природе?..

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Среди прочих лептонов в 1936 году, среди продуктов взаимодействий космических лучей, был открыт мюон. Он оказался одной из первых известных нестабильных субатомных частиц, которая во всех отношениях, кроме стабильности, напоминает электрон, то есть имеет тот же заряд и спин и участвует в тех же взаимодействиях, но имеет бóльшую массу. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. На долю мюона приходится значительная часть фонового космического излучения, которое регистрируется на поверхности Земли счетчиком Г. Гейгера...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Варварские наклонности некоторых звезд иногда возмущают. Пока одни отнимают вещество у ближайших тел, другие поступают еще более нагло и жестоко. Они скидывают со звезд газопылевые диски, которые могли бы дать начало новой планетной системе, а то и новым формам жизни. Но не со всех, а лишь с тех, кто решается переступить опасную черту.



  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • За последнее время вблизи Земли пролетели несколько сравнительно крупных небесных тел. Сильную тревогу вызвало в 1936 г. прохождение астероида Адонис на расстоянии около 2 млн. км от Земли. А настоящую панику вызвал в 1937 г. астероид Гермес, имеющий диаметр ≈1,5 км, промчавшийся лишь на расстоянии 800 тыс. км от Земли (удвоенное расстояние до Луны). Позже (в 1992 г.) большой ажиотаж был связан с приближением к Земле малой планеты Тоутатис. Астероид диаметром около полукилометра пролетел мимо Земли 19 мая 1996 г. на расстоянии всего 450 тыс. км.

    • Страницы
    • 1
    • 2
    • 3


  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • ...В начале 70-х годов появилось предложение объединить бозоны и фермионы в единую теорию, что, мягко говоря, среди ученых вызвало недоумение, ведь столь различны по своим свойствам эти две группы частиц. Тем не менее, оно возможно, если обратиться к симметрии, более широкой, нежели симметрия Лоренца — Пуанкаре, лежащая в основе теории относительности. Математическая суперсимметрия соответствует извлечению квадратного корня из симметрии Лоренца — Пуанкаре, физически же она соответствует превращению фермиона в бозон и наоборот. Разумеется, в реальном мире невозможно проделать такую операцию, тем не менее, операцию суперсимметрии можно сформулировать математически и можно построить теории, включающие суперсимметрии...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.