Рекомендуем статьи:
В феврале 2008 года Сандийская Национальная лаборатория в штате Нью-Мексико (США) достигла эффективности 31,25% в установке, состоящей из параболического концентратора и двигателя Стирлинга. Новый рекорд был поставлен в ходе экспериментов, проведенных совместно с участием компании Stirling Energy Systems (SES). Предыдущий рекорд, зафиксированный в 1984 году, составлял 29,4%. Рекордное значение было достигнуто на установке Serial–3, представляющей собой прототип одного из шести модулей солнечной электростанции на основе двигателей Стирлинга мощностью до 150 кВт. Установка представляет собой поворотное вогнутое зеркало из 82 элементов, которое концентрирует солнечные лучи в фокальной плоскости, где располагается нагреватель механического двигателя “внешнего сгорания” системы Стирлинга.
В двигателе Стирлинга в качестве рабочего тела используется водород. Сам двигатель опломбирован и не требует непрерывного технического обслуживания. Периодически нагреваясь и охлаждаясь, рабочее тело приводит в движение через кривошипно-шатунный механизм вал двигателя, который, в свою очередь, механически соединен с валом электрогенератора. Коэффициент полезного действия такой системы оказался рекордно высоким.
Новое поколение солнечных энергоустановок на базе двигателя Стирлинга отличается рядом усовершенствований. В первую очередь, они касаются системы зеркал. Новые зеркала выполнены на базе стекла с малым содержанием железа и с новым посеребрением, что позволило повысить коэффициент фокусировки солнечных лучей с ранее достигнутых 91% до 94%. Зеркала имеют особую форму, защищенную патентом Sandia. Ее использование позволило уменьшить размеры пятна рассеяния в фокальной области до семи дюймов (менее 20 см) в диаметре.
Поставить рекорд помогла также безоблачная зимняя погода, установившаяся в день испытаний над штатом Нью-Мексико. Благодаря ей температура холодильника тепловой машины составила 23°С. В ходе испытаний, продолжавшихся два с половиной часа, полезная электрическая мощность машины составила 26,75 кВт.
Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 1980-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах. В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каждый, имеющих коэффициент отражения 0,71, концентрируют солнечную энергию на центральный приемник в виде открытого цилиндра, установленного на башне высотой 89 м и служащего парогенератором.
В башенных СЭС используется центральный приемник с полем гелиостатов (крупных солнечных плоских зеркал), обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем очень сложная, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550°С, воздух и другие газы — до 1000°С, низкокипящие органические жидкости (в том числе фреоны) — до 100°С, жидкометаллические теплоносители — до 800°С.
В ряде стран разрабатываются гелиоэнергетические установки с использованием так называемых солнечных прудов.СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентации, однако их можно сооружать только в районах с жарким климатом. Ни фокусирующие зеркала, ни солнечные фотоэлементы не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.
В солнечном пруду происходит одновременное улавливание и накапливание солнечной энергии в большом объеме жидкости. Обнаружено, что в некоторых естественных соленых озерах температура воды у дна может достигать 70°С. Это обусловлено высокой концентрацией соли, которую имеют солнечные пруды в придонных слоях воды. В неконвективном среднем слое воды концентрация соли возрастает с глубиной, на поверхности в конвекционном слое концентрация соли падает. В обычном водоеме поглощаемая солнечная энергия нагревает в основном поверхностный слой, и эта теплота довольно быстро теряется, особенно в ночные часы и при холодной ненастной погоде — из-за испарения воды и теплообмена с окружающим воздухом. Солнечная энергия, проникающая через всю массу жидкости в солнечном пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости, в результате чего температура ее может достигать 90–100°С, в то время как температура поверхностного слоя остается на уровне 20°С. Кроме того, тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает, в то время как верхние слои воды остаются относительно холодными. Горячий придонный “рассол” используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Солнечный пруд служит одновременно коллектором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами солнечной энергии. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества. Отвод теплоты из солнечного пруда может осуществляться либо посредством змеевика, размещенного в нижнем слое жидкости, либо путем отвода жидкости из этого слоя в теплообменник, в котором циркулирует теплоноситель. При первом способе меньше нарушается температурное расслоение жидкости в пруду, но второй способ теплотехнически более эффективен и экономичен.
Благодаря высокой теплоемкости воды, в солнечном пруду за летний сезон накапливается большое количество теплоты, и вследствие низких тепловых потерь падение температуры в нижнем слое в холодный период года происходит медленно, так что солнечный пруд служит сезонным аккумулятором энергии. Теплота к потребителю отводится из нижней зоны пруда. Обычно глубина пруда составляет 1-3 м. На 1 м2 площади пруда требуется 500-1000 кг поваренной соли, ее можно заменить хлоридом магния.
Наиболее крупный из существующих солнечных прудов находится в местечке Бейт-Ха-Арава в Израиле. Его площадь составляет 250000 м2 . Он используется для производства электроэнергии. Электрическая мощность энергетической установки, работающей по циклу Рэнкина, равна 5 МВт. Себестоимость
1 кВт•ч электроэнергии значительно ниже, чем на СЭС других типов. Израиль является мировым лидером в области использования соленых солнечных прудов. Компания “Ormat Systems Inc.” установила несколько таких систем в акватории Мертвого моря. Самая крупная из них имеет мощность
5 МВт. Пруд площадью 20 га превращает солнечный свет в электричество при КПД около 1%. Нижние слои воды в пруде имеют очень высокую плотность.
Крупнейшим в США является солнечный пруд площадью 0,3 га в Эль-Пасо (штат Техас). Он приводит в действие
70-киловаттный турбогенератор Рэнкина и опреснительную установку объемом 20000 литров в день, а также поставляет техническое тепло на соседний пищевой комбинат. Температура воды в пруде может достичь и удерживаться на уровне выше 90°C в теплоаккумулирующей зоне. Во время пиковой мощности эта установка способна производить более 100 кВт•ч электроэнергии в час, а объем опресненной питьевой воды составляет более 350000 литров в сутки. За пять лет работы установка выработала свыше 50000 кВт•ч электроэнергии. Искусственный соленый солнечный пруд сооружен в Майамисбурге (штат Огайо, США). Он используется для обогрева городского плавательного бассейна и дома отдыха.
Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах конденсирования воздуха абсорбционного типа, для производства электроэнергии. Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого-либо другого теплоносителя.
Идея сооружения Международной опытной космической электростанции (КСЭС), подающей электроэнергию земным потребителям, возникла в 1960 г. КСЭС в совокупности с промежуточными атмосферными сооружениями сможет не только подавать электроэнергию земным потребителям, но и непосредственно освещать большие участки земной поверхности ночью и затенять их днем, регулировать климатические условия, уничтожать тайфуны и смерчи, снабжать энергией космические корабли, воздушные средства, наземный транспорт, удаленные от линий электропередачи промышленные предприятия и т.д. Целесообразность создания КСЭС диктуется неисчерпаемостью солнечной энергии, экологическими соображениями и необходимостью сохранять ныне широко применяемые природные энергоносители (нефть, газ, уголь) для нужд химической промышленности. КСЭС с периодически сменяемым персоналом могла бы стать не только прообразом сверхмощных станций будущего, но и одновременно выполнять огромное количество обычной “космической работы” (исследования, наблюдения, эксперименты). Потребность в такой опытной КСЭС имеется уже сейчас, причем не только потребность, но и возможность ее создания при условии международного сотрудничества.
Практическое использование солнечной энергии в космонавтике началось в 1958 году на первом ИСЗ США и на третьем советском ИСЗ. Эти спутники, как известно, имели солнечные батареи. Первая публикация по проблеме КСЭС с изложением технической сущности принадлежит американскому инженеру П. Гейзеру. В его проекте масса КСЭС достигает 30 тыс.т, размер (“размах”) солнечных батарей 60 км, а электрическая мощность — примерно 8,5 ГВт. Таким образом, мощность спроектированной станции выше мощности эксплуатируемых ныне крупнейших электростанций мира: ГЭС “Гленд-Кули” (США) — 6,2 ГВт, Красноярской ГЭС — 6 ГВт, АЭС “Фукушима” — 4,7 ГВт, ТЭС “Кашима” — 4,4 ГВт (Япония).
На современных космических аппаратах применяются различные энергетические установки. Характеристики космических солнечных батарей (СБ), применяемых в настоящее время, весьма разнообразны. Удельная масса панельных СБ составляет 5-10 кг/м2, причем около 40% массы приходится на полупроводниковые элементы, а остальное на конструкцию. Ожидается, что использование материалов на основе бора и углерода позволит уменьшить массу конструкции в 2 раза. Срок службы СБ пока подтвержден 5 годами, однако считается, что он может составить
30 лет, правда, с деградацией (уменьшением) КПД СБ к концу этого периода на 40%. Достигнутое КПД для двухслойного элемента, составленного из арсенида галлия (GaAs) и кремния (Si), равно 28,5% , что касается дальнейших перспектив, то они оцениваются довольно высокими значениями — до 60%.
В космической энергетике большая роль отводится аккумуляторам. Самые лучшие из современных маховиков способны накапливать весьма значительную энергию — до 1 МДж/кг, хотя существуют и такие экспериментальные устройства, которые способны накапливать энергию до 12 МДж/кг. Но для расчетов ограничиваются значением 0,07 МДж/кг.
Самый интересный аспект создания и эксплуатации КСЭС — изучение способов беспроводной передачи энергии на сверхдальние расстояния, изучение влияния этого процесса на окружающую среду, оптимизация параметров станции. Первые практические опыты в нашей стране по передаче энергии без проводов с помощью СВЧ-излучения были проведены под руководством профессора С.И. Тетельбаума в Киевском политехническом институте 30 лет назад. Две простейшие квадратные антенны со стороной квадрата 100 м при длине волны 1 см позволили передавать энергию на расстояние 50 км с КПД 40%, а на расстояние 5 км — с КПД 60%. Современное состояние техники позволяет существенно улучшить все показатели беспроводной линии передачи энергии с помощью СВЧ-излучения.
Целесообразность создания КСЭС и КТЭС диктуется неисчерпаемостью как солнечной энергии, так и горючего для КТЭС — космического водорода, экологическими соображениями и необходимостью сохранить ныне широко применяемые природные химические энергоресурсы для нужд химической промышленности.