Возобновляемые источники энергии. Солнце

Вс, 03/23/2014 - 14:31

СЭС башенного типа

Sierra SunTower - СЭС башенного типа в Калифорнии. Мощность станции - 5МВт, обеспечивает электроэнергией 4000 домов

1. Высокая концентрация соли
2. Средний слой
3. Низкая концентрация соли
4. Холодная вода “в” и горячая вода “из”


Космическая электростанция - проект недалекого будущего

Рекорд двигателя Стирлинга

В феврале 2008 года Сандийская Национальная лаборатория в штате Нью-Мексико (США) достигла эффективности 31,25% в установке, состоящей из параболического концентратора и двигателя Стирлинга. Новый рекорд был поставлен в ходе экспериментов, проведенных совместно с участием компании Stirling Energy Systems (SES). Предыдущий рекорд, зафиксированный в 1984 году, составлял 29,4%. Рекордное значение было достигнуто на установке Serial–3, представляющей собой прототип одного из шести модулей солнечной электростанции на основе двигателей Стирлинга мощностью до 150 кВт. Установка представляет собой поворотное вогнутое зеркало из 82 элементов, которое концентрирует солнечные лучи в фокальной плоскости, где располагается нагреватель механического двигателя “внешнего сгорания” системы Стирлинга.

В двигателе Стирлинга в качестве рабочего тела используется водород. Сам двигатель опломбирован и не требует непрерывного технического обслуживания. Периодически нагреваясь и охлаждаясь, рабочее тело приводит в движение через кривошипно-шатунный механизм вал двигателя, который, в свою очередь, механически соединен с валом электрогенератора. Коэффициент полезного действия такой системы оказался рекордно высоким.

Новое поколение солнечных энергоустановок на базе двигателя Стирлинга отличается рядом усовершенствований. В первую очередь, они касаются системы зеркал. Новые зеркала выполнены на базе стекла с малым содержанием железа и с новым посеребрением, что позволило повысить коэффициент фокусировки солнечных лучей с ранее достигнутых 91% до 94%. Зеркала имеют особую форму, защищенную патентом Sandia. Ее использование позволило уменьшить размеры пятна рассеяния в фокальной области до семи дюймов (менее 20 см) в диаметре.

Поставить рекорд помогла также безоблачная зимняя погода, установившаяся в день испытаний над штатом Нью-Мексико. Благодаря ей температура холодильника тепловой машины составила 23°С. В ходе испытаний, продолжавшихся два с половиной часа, полезная электрическая мощность машины составила 26,75 кВт.

Солнечная башня

Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 1980-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах. В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каждый, имеющих коэффициент отражения 0,71, концентрируют солнечную энергию на центральный приемник в виде открытого цилиндра, установленного на башне высотой 89 м и служащего парогенератором.

В башенных СЭС используется центральный приемник с полем гелиостатов (крупных солнечных плоских зеркал), обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем очень сложная, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550°С, воздух и другие газы — до 1000°С, низкокипящие органические жидкости (в том числе фреоны) — до 100°С, жидкометаллические теплоносители — до 800°С.

И просто соленый пруд!

В ряде стран разрабатываются гелиоэнергетические установки с использованием так называемых солнечных прудов.СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентации, однако их можно сооружать только в районах с жарким климатом. Ни фокусирующие зеркала, ни солнечные фотоэлементы не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.

В солнечном пруду происходит одновременное улавливание и накапливание солнечной энергии в большом объеме жидкости. Обнаружено, что в некоторых естественных соленых озерах температура воды у дна может достигать 70°С. Это обусловлено высокой концентрацией соли, которую имеют солнечные пруды в придонных слоях воды. В неконвективном среднем слое воды концентрация соли возрастает с глубиной, на поверхности в конвекционном слое концентрация соли падает. В обычном водоеме поглощаемая солнечная энергия нагревает в основном поверхностный слой, и эта теплота довольно быстро теряется, особенно в ночные часы и при холодной ненастной погоде — из-за испарения воды и теплообмена с окружающим воздухом. Солнечная энергия, проникающая через всю массу жидкости в солнечном пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости, в результате чего температура ее может достигать 90–100°С, в то время как температура поверхностного слоя остается на уровне 20°С. Кроме того, тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает, в то время как верхние слои воды остаются относительно холодными. Горячий придонный “рассол” используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Солнечный пруд служит одновременно коллектором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами солнечной энергии. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества. Отвод теплоты из солнечного пруда может осуществляться либо посредством змеевика, размещенного в нижнем слое жидкости, либо путем отвода жидкости из этого слоя в теплообменник, в котором циркулирует теплоноситель. При первом способе меньше нарушается температурное расслоение жидкости в пруду, но второй способ теплотехнически более эффективен и экономичен.

Благодаря высокой теплоемкости воды, в солнечном пруду за летний сезон накапливается большое количество теплоты, и вследствие низких тепловых потерь падение температуры в нижнем слое в холодный период года происходит медленно, так что солнечный пруд служит сезонным аккумулятором энергии. Теплота к потребителю отводится из нижней зоны пруда. Обычно глубина пруда составляет 1-3 м. На 1 м2 площади пруда требуется 500-1000 кг поваренной соли, ее можно заменить хлоридом магния.

Наиболее крупный из существующих солнечных прудов находится в местечке Бейт-Ха-Арава в Израиле. Его площадь составляет 250000 м2 . Он используется для производства электроэнергии. Электрическая мощность энергетической установки, работающей по циклу Рэнкина, равна 5 МВт. Себестоимость
1 кВт•ч электроэнергии значительно ниже, чем на СЭС других типов. Израиль является мировым лидером в области использования соленых солнечных прудов. Компания “Ormat Systems Inc.” установила несколько таких систем в акватории Мертвого моря. Самая крупная из них имеет мощность
5 МВт. Пруд площадью 20 га превращает солнечный свет в электричество при КПД около 1%. Нижние слои воды в пруде имеют очень высокую плотность.

Крупнейшим в США является солнечный пруд площадью 0,3 га в Эль-Пасо (штат Техас). Он приводит в действие
70-киловаттный турбогенератор Рэнкина и опреснительную установку объемом 20000 литров в день, а также поставляет техническое тепло на соседний пищевой комбинат. Температура воды в пруде может достичь и удерживаться на уровне выше 90°C в теплоаккумулирующей зоне. Во время пиковой мощности эта установка способна производить более 100 кВт•ч электроэнергии в час, а объем опресненной питьевой воды составляет более 350000 литров в сутки. За пять лет работы установка выработала свыше 50000 кВт•ч электроэнергии. Искусственный соленый солнечный пруд сооружен в Майамисбурге (штат Огайо, США). Он используется для обогрева городского плавательного бассейна и дома отдыха.

Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах конденсирования воздуха абсорбционного типа, для производства электроэнергии. Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого-либо другого теплоносителя.

Электроэнергия из космоса

Идея сооружения Международной опытной космической электростанции (КСЭС), подающей электроэнергию земным потребителям, возникла в 1960 г. КСЭС в совокупности с промежуточными атмосферными сооружениями сможет не только подавать электроэнергию земным потребителям, но и непосредственно освещать большие участки земной поверхности ночью и затенять их днем, регулировать климатические условия, уничтожать тайфуны и смерчи, снабжать энергией космические корабли, воздушные средства, наземный транспорт, удаленные от линий электропередачи промышленные предприятия и т.д. Целесообразность создания КСЭС диктуется неисчерпаемостью солнечной энергии, экологическими соображениями и необходимостью сохранять ныне широко применяемые природные энергоносители (нефть, газ, уголь) для нужд химической промышленности. КСЭС с периодически сменяемым персоналом могла бы стать не только прообразом сверхмощных станций будущего, но и одновременно выполнять огромное количество обычной “космической работы” (исследования, наблюдения, эксперименты). Потребность в такой опытной КСЭС имеется уже сейчас, причем не только потребность, но и возможность ее создания при условии международного сотрудничества.

Практическое использование солнечной энергии в космонавтике началось в 1958 году на первом ИСЗ США и на третьем советском ИСЗ. Эти спутники, как известно, имели солнечные батареи. Первая публикация по проблеме КСЭС с изложением технической сущности принадлежит американскому инженеру П. Гейзеру. В его проекте масса КСЭС достигает 30 тыс.т, размер (“размах”) солнечных батарей 60 км, а электрическая мощность — примерно 8,5 ГВт. Таким образом, мощность спроектированной станции выше мощности эксплуатируемых ныне крупнейших электростанций мира: ГЭС “Гленд-Кули” (США) — 6,2 ГВт, Красноярской ГЭС — 6 ГВт, АЭС “Фукушима” — 4,7 ГВт, ТЭС “Кашима” — 4,4 ГВт (Япония).

На современных космических аппаратах применяются различные энергетические установки. Характеристики космических солнечных батарей (СБ), применяемых в настоящее время, весьма разнообразны. Удельная масса панельных СБ составляет 5-10 кг/м2, причем около 40% массы приходится на полупроводниковые элементы, а остальное на конструкцию. Ожидается, что использование материалов на основе бора и углерода позволит уменьшить массу конструкции в 2 раза. Срок службы СБ пока подтвержден 5 годами, однако считается, что он может составить
30 лет, правда, с деградацией (уменьшением) КПД СБ к концу этого периода на 40%. Достигнутое КПД для двухслойного элемента, составленного из арсенида галлия (GaAs) и кремния (Si), равно 28,5% , что касается дальнейших перспектив, то они оцениваются довольно высокими значениями — до 60%.
В космической энергетике большая роль отводится аккумуляторам. Самые лучшие из современных маховиков способны накапливать весьма значительную энергию — до 1 МДж/кг, хотя существуют и такие экспериментальные устройства, которые способны накапливать энергию до 12 МДж/кг. Но для расчетов ограничиваются значением 0,07 МДж/кг.

Самый интересный аспект создания и эксплуатации КСЭС — изучение способов беспроводной передачи энергии на сверхдальние расстояния, изучение влияния этого процесса на окружающую среду, оптимизация параметров станции. Первые практические опыты в нашей стране по передаче энергии без проводов с помощью СВЧ-излучения были проведены под руководством профессора С.И. Тетельбаума в Киевском политехническом институте 30 лет назад. Две простейшие квадратные антенны со стороной квадрата 100 м при длине волны 1 см позволили передавать энергию на расстояние 50 км с КПД 40%, а на расстояние 5 км — с КПД 60%. Современное состояние техники позволяет существенно улучшить все показатели беспроводной линии передачи энергии с помощью СВЧ-излучения.

Целесообразность создания КСЭС и КТЭС диктуется неисчерпаемостью как солнечной энергии, так и горючего для КТЭС — космического водорода, экологическими соображениями и необходимостью сохранить ныне широко применяемые природные химические энергоресурсы для нужд химической промышленности.

Другие материалы рубрики


  • Ветры бывают самые разнообразные: это и дующий десятки минут легкий бриз, и глобальные ветра — но все они существуют за счет солнечного нагрева планеты. Важными факторами влияния на атмосферную циркуляцию воздуха являются разность обогрева между экватором и полюсами, а также вращение нашей планеты, называемое эффектом Кориолиса. Сезонные колебания в скорости и направлении ветра являются результатом сезонных изменений из-за относительного наклона оси вращения Земли к Солнцу, которое, в свою очередь, изменяет паттерны разности обогрева. Ежедневные различия в обогреве атмосферы вызваны различным нагревом локальных областей поверхности земли, например, суши и океана. Еще движение воздуха осложняется целым рядом факторов глобального масштаба, таких как вращение Земли, а также сушей, горными хребтами и холмами, растительностью, океанами, морями и озерами. Из-за трения о поверхность земли, растительность и здания скорость ветра возрастает с увеличением высоты над поверхностью земли.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Многие десятилетия неизменным элементом пейзажа промышленной нефтедобычи являлись грандиозные факелы, в которых сгорал попутный газ — неизбежный спутник нефтедобычи. Громадные шлейфы дыма простирались на десятки и сотни километров и были прекрасно видны даже из космоса. Так было долго и казалось, что так будет всегда. Но все меняется в этом мире, и иногда — в лучшую сторону.

    • Страницы
    • 1
    • 2


  • ...После более чем столетия нескончаемых усовершенствований двигатель внутреннего сгорания все еще имеет коэффициент полезного действия около 16%. КПД всех тепловых двигателей ограничено циклом Карно. Теоретически, даже при идеальных условиях тепловой двигатель, используемый для приведения в движение автомобиля или электрогенератора, не может преобразовать всю тепловую энергию в механическую. Некоторая часть тепла теряется. В двигателе внутреннего сгорания тепло подается от источника с высокой температурой (Т1), часть энергии преобразуется в механическую и оставшаяся часть выбрасывается при низкой температуре (Т2). Чем больше разность между этими температурами, тем выше КПД двигателя...

    • Страницы
    • 1
    • 2
    • 3


  • Непредельные углеводороды в небольшом количестве (около 5%) являются практически единственным не содержащимся в природной нефти классом соединений, образующимся в заметных количествах при проведении процесса на кобальтовых катализаторах. Их содержание в нефти не нормируется, а их получение является одной из основных целей нефтехимической переработки природной нефти.
    Таким образом, по всем показателям, определяемым стандартом, СЖУ (синтетические жидкие углеводороды) могут быть отнесены к наиболее ценным сортам нефти. С экономической точки зрения наиболее рациональным использованием СЖУ была бы их раздельная транспортировка с промыслов как более ценного и дорогостоящего продукта, особенно с точки зрения отсутствия серосодержащих соединений и высокой концентрации легких (светлых) фракций.

    • Страницы
    • 1
    • 2


  • Многие ученые считают, что единственным масштабным и долговременным решением надвигающейся энергетической проблемы, одновременно удовлетворяющей условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования лунного изотопа элемента гелия.
    Страна, которая опередит другие в освоении Луны и добычи гелия-3, станет лидером в мировой экономике, считает академик Эрик Галимов.



  • Чтобы получать тепло из снега, дождя и, что реже, града, нужен АТМОТЕРМ. Это устройство относится к стационарным приборам для нагревания текущих сред, использующий при прохождении данного процесса тепловой эффект экзотермической реакции образования гидроксида кальция из СаО, которая проходит при утилизации снежного покрова на месте его образования.
    Область применения устройства – генерация тепловой энергии для обогрева стен жилых и нежилых помещений, используя атмосферные осадки.
    Исследуя решения в данной области, мы не найдем наверняка устройства, объединяющего в себе функции переработки атмосферных осадков и обогревателя, работающего без подвода электроэнергии, при этом являясь таким экономичным, как атмотерм (экономичность смотрите дальше). Решения, предлагаемые другими авторами (смотри ниже) имеют ряд недостатков: потребляемость большого количества электроэнергии, узкая направленность технологий – только утилизация снега или только генерация тепловой энергии, сложность устройства, лежащее в наличии большого количества комплектующих компонентов, таких как ИК-излучатели и другие подобные устройства.

    • Страницы
    • 1
    • 2


  • Нефте- и газодобыча уже в течение многих лет — ведущие отрасли российской экономики. В иные периоды они давали до 50% поступлений в федеральный бюджет. Это стало возможным только после введения в эксплуатацию крупнейших месторождений Западной Сибири. Поиск месторождений, ставших открытием века, стоил огромного труда. Основной вклад в него внесли сибирские геологи.
    Чтобы понять, где и как искать нефть, — а ее считают самым труднодоступным богатством планеты, — надо знать, как она образуется. В 1932 году была опубликована классическая работа основоположника советской нефтяной геологии Ивана Михайловича Губкина (1871-1939) «Учение о нефти», которая сыграла огромную роль в развитии представлений о происхождении нефти и формировании ее залежей. Он сформулировал четыре этапа образования нефтяных запасов, которые и сегодня лежат в основе научных воззрений о процессах нефтеобразования.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Еще с незапамятных времен люди использовали энергию ветра.
    Первоначально человек научился преобразовывать кинетическую энергию воздушного потока (ветра) в механическую. Появилось огромное разнообразие ветряных мельниц, значительно облегчивших жизнь людей того времени.
    Идея ветрогенератора для выработки электрической энергии с использованием энергии ветра появилась чуть более 100 лет назад.
    Пытливая мысль изобретателей создала огромное разнообразие конструкций ветроустановок:
    — по расположению оси вращения лопастей (горизонтальная, вертикальная, наклоненная);
    — по количеству лопастей (одна, две, три и более);
    — по мощности (от десятков Ватт до нескольких МВатт);
    — по форме лопастей, по конструкции генераторов и т.д.

    • Страницы
    • 1
    • 2


  • Солнце — основной источник энергии на планете. В полдень на низких широтах плотность потока энергии солнечного излучения близка к 1 кВт/м²,, в среднем по освещенной части земного шара — 350 Вт/м². Потенциальный ресурс энергии огромен. Ей соответствует мощность 6,7∙1016 Вт. Теоретически КПД преобразования энергии может достигать 93%. Сейчас он составляет 10…30%. КПД определяет технический ресурс, равный произведению КПД на потенциальный ресурс.
    В настоящее время энергия солнечного излучения используется мало из-за относительно низких значений плотности потока энергии (100 — 1000 Вт/м²).
    Разрабатываются проекты создания солнечных энергосистем на геостационарной орбите с мощностью 1…10 ГВт. Передачу энергии на Землю планируется осуществлять при помощи мощных электромагнитных пучков на длине волны около 5…10 см.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Вопрос смесевых технологий при производстве бензинов давно уже интересует технологов, экологов, энергетиков, автомобилистов и просто любителей всяческих новшеств и современных технологий. Несмотря на множество позитивных моментов, так же как и на наличие определенных недостатков, однозначности в выводах пока еще не присутствует, что оставляет обширные пространства для размышлений и убеждений, похвалы и критики.

    • Страницы
    • 1
    • 2